当x趋近于0时,所有指数函数趋近于1,所有对数函数都趋近于负无穷或正无穷,所有幂函数都趋近于0。解析(规律):1、指数函数:一般地,函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。 对于一切指数函数来讲,值域为(0, +∞)。指数函数中前面的系数为1。所以当x趋近于0时,所有...
指数函数是重要的基本初等函数之一。一般地,y=aˣ函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。 注意,在指数函数的定义表达式中,在aˣ前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。对数函数:一般地,如果a(a大...
当底数大于1时:指数函数底数越大越靠近y轴,对数函数底数越大越靠近x轴。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。当a>...
1、对数函数的图像都过(1,0)点,指数函数的图像都过(0,1)点;2、对数(指数)函数的底数大于1时为增函数,大于0而小于1时为减函数;3、对数函数的图像在y轴右侧,指数函数的图像在x轴上方;4、对数函数的图像在区间(1,正无穷)上,当底数大于1时底数越大图像越接近x轴,当底数小于1时底数越...
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0一般也不考虑.(2) 指数函数的值域为大于0的实数集合.(3) 函数图形都是下凹的.(4) a大于1,则指数函数单调递增;a小于1大于0...
指数计算公式:① ② ③ ④ 对数运算公式:如果a>0,a≠1,M>0,N>0,那么1、loga(MN)=logaM+logaN2、logaMN=logaM-logaN3、logaMn=nlogaM (n∈R)
1、求定义域和值域。求定义域注意三点:偶次根号下的式子大于等于0,分母不为0,真数大于0。2、过定点问题。3、比大小:(1)利用单调性比;(2)利用媒介法比大小,常用的媒介有0和1。4、复合函数题型:(1)分解;(2)研究;(3)综合解决问题。指数函数和对数函数的概念:指数函数概念:指数...
自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;当0<a<1时,函数是递减函数,且y>0.幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。二、性质不同 1、幂函数:2、指数函数:...
N是真数。对数的底数必须大于0且不等于1,而真数必须大于0,这是对数函数的基本条件。在比较两个对数函数值时,重要的是底数和真数的关系。当底数a大于1时,真数越大,对应的函数值也越大;相反,当底数0<a<1时,真数越小,函数值则越大。这就是对数函数相对于指数函数的一个核心特性。
换底公式(很重要):log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga。ln自然对数以e为底e为无限不循环小数(通常情况下只取e=2.71828)。lg常用对数以10为底。指数函数的定义域为R,这里的前提是a大于0且不等于1,对于a不大于0的情况则必然使得函数的定义域不连续,因此我们不予考虑,...