驻点与极值点的关系

发布网友 发布时间:2022-04-20 04:18

我来回答

1个回答

热心网友 时间:2022-05-13 05:21

驻点是f'(x)=0的点是极值点;原函数在x=0点导数不为0,不是驻点。因此极值点不一定是驻点,驻点也不一定是极值点。

极值点既可导也可不导,极值点可导的情况是驻点,不可导的情况可以是尖点或角点。而驻点根据其概念,只要一阶导数为0就可以了,也不是说一定是极值点。

扩展资料:

对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况)。

反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com