发布网友 发布时间:2022-04-20 00:39
共3个回答
热心网友 时间:2023-07-25 16:22
二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:
一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;
就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π
扩展资料:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为
可得到二重积分在极坐标下的表达式:
参考资料:百度百科-二重积分
热心网友 时间:2023-07-25 16:23
二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:
一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以得到一个关于ρ的等式;
就是ρ的最大值 而ρ的最小值一直是0过原点作该圆的切线,切线与x轴夹角为θ范围如:x^2+y^2=2x 所以(ρcosθ)^2+(ρsinθ)^2=2ρcosθ ρ=2cosθ ;此时0≤ρ≤2cosθ 切线为x=0 所以 -2/π≤θ≤2/π
扩展资料:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D。
参考资料来源:百度百科-二重积分
热心网友 时间:2023-07-25 16:23
x的范围是0<=x<=2,0<=y<=根号(2x-x^2),平方地x^2+y^2=2x,因此画出图形可知是