如何证明可导函数为奇函数,原函数为偶函数

发布网友 发布时间:2022-04-20 16:20

我来回答

1个回答

热心网友 时间:2023-06-28 17:29

楼上两位的反例都不正确
sp296367:y=x^8是偶函数!其导函数y=8x^7是奇函数!
wycwym10:“y等于x方加1和y等于x方导函数都一样是y等于2x”是对的,但是它们都是偶函数!你下的“但不都是偶函数”的结论是错误的!
这个命题是可以严格证明的真命题!
证明:
根据积分定义,有
f(x)-f(0)=∫ f'(x) dx
f(-x)-f(0)=∫ f'(x) dx
∵f'(x)是奇函数
∴f'(-x)=-f'(x)
∴∫ f'(x) dx
=-∫ f'(x) d(-x)
=∫ f'(-x) d(-x)
=∫ f'(t) d(t)
=∫ f'(x) d(x)
即f(x)-f(0)=f(-x)-f(0)
∴f(x)=f(-x)
故原命题成立
证毕
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com