解向量的秩为什么是n-r?

发布网友 发布时间:2022-04-19 09:56

我来回答

1个回答

热心网友 时间:2023-08-24 12:05

解向量的秩是n-r因为:根据秩-零定理,Ax=0的解空间维数是n-r(A)维,或通过行初等变换把A化成行阶梯型。

可以这样理解,当A满秩,即r(A)=n时显然Ax=0,只有唯一解(零解),基础解系中,解向量个数是0=n-r当A不满秩时。

例如:r(A)=n-1时,Ax=0,显然有一个自由变量,因此,基础解系中,解向量个数是1=n-r依此类推,可以发现r(A)+解向量个数=n严格证明,可以利用线性空间的维数定理。

解向量

是线性方程组的一个解。因为一组解在空间几何里可以表示为一个向量,所以叫做解向量。解向量在矩阵和线性方程组中是常用概念。如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r<n,则解空间S的基础解系存在,且每个基础解系恰有n-r个解向量。

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com