导数的定义三个公式是什么?

发布网友 发布时间:2022-04-19 15:58

我来回答

1个回答

热心网友 时间:2023-09-01 19:43

导数的三种定义表达式是:

第一种:f '(x0)=lim[x→x0] [f(x)-f(x0)]/(x-x0);

第二种:f '(x0)=lim[h→0] [f(x0+h)-f(x0)]/h;

第三种:f '(x0)=lim [Δx→0] Δy/Δx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性*近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com