发布网友 发布时间:2022-03-24 14:25
共9个回答
热心网友 时间:2022-03-24 15:55
那我就转载一篇别人转行做数据分析的经验贴给题主吧:
亲爱的各位加米谷学院的老师和同学们好,首先非常感谢大家在17年9月到18年3月份5个月时间的陪伴,以及张老师和曾老师在我学习期间的耐心辅导。在大数据培训的道路上,正是因为有你们的辛勤付出与陪伴,才让我在大数据职业道路上有了今天我很满意的薪资待遇。再次谢谢你们!
在数据分析挖掘培训的过程中给我印象最深就是张老师,张老师的课讲的很清楚,尤其是PPT图解理论,让我这样的0基础学员能够理解到位,不愧是国家大数据标准组的成员。虽然只有短短五个月的学习时间,但是对于我个人来说收获非常大,不止让我从一个小白成功入行,并成功面试到张老师推荐的公司,拿到了我非常满意的薪水。
张老师希望我可以给后面的学弟学妹们分享一点学习经验,学习这件事大家都不陌生,大家都是经历过十几年的学习生涯。尤其是转行0基础学习大数据的同学,对大数据行业了解的也一定很清楚了,才会决定来进行大数据培训。下面我只说5个方面,后面的学弟学妹可以从中作参考,也希望对你们有帮助。
1、兴趣是最好的老师,既然决定转好从0基础学习大数据,那你一定要从心里爱上它,只有你真正的上心了,才能有动力去学好它。
2、多看,课前预习是少不了的,课前老师都会把当天讲的课件提前发给你,一定要抽出时间先认真看一下,否则,你会发现到时候老师讲的内容你接受起来非常吃力。
3、多问,如果你是一个0基础学习大数据,之前没有任何编程基础,遇到问题一定要多问,第一时间问老师,不要碍着面子死撑,一方面可以锻炼你的沟通能力,是否能用尽量通俗的话语让老师明白你遇到的问题所在(对你以后面试很有帮助),另一方面现在的学习成果也影响着以后的薪资待遇。
4、多练,加米谷学院每个阶段的实训项目都是很有针对性的,全部是来自真实企业中真实的项目,现在多练习对于以后的面试以及工作经验都会非常的有帮助。
5、勤奋,这个说起来很简单,人都是有惰性的,就像我们上学时候一样,同样一个班级,老师教的东西也都一样,为什么有的学习好,有的学习不好?数据分析培训也一样,毕业之后为什么有的薪资可以拿到18K,有的却只有几千?这跟自己的勤奋程度是成正比的,每个人请找到自己的勤奋点,加油!
热心网友 时间:2022-03-24 17:13
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,很好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。热心网友 时间:2022-03-24 18:47
大数据基础阶段入门算简单的,但是后面的高级阶段、机器学习是比较难得,零基础想自学学好大数据还是有很大的难度的。更别说找到一份不错的工作了。所以,零基础想入门大数据,最好是去一个面授的学校专业系统的学一学。最好去实地看看,可以去千锋试听一下,不过再好的学校自己不努力还是不行。俗话说师傅领进门,修行靠个人。热心网友 时间:2022-03-24 20:39
我是来自农村的一名很普通的女孩,17年大学毕业,现在在杭州一家大数据公司做分析师。想跟大家分享一下,我是如何从刚毕业的一张白纸,成长为一名大数据分析师的,希望我的学习成长心路历程,能够给到现在想往大数据分析行业发展的小伙伴一些参考。热心网友 时间:2022-03-24 22:47
要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具;。可以到天池大赛上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,九道门之类的,如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由赵强老师带了半年,现在基本上已经能熟练的搞这一套了。热心网友 时间:2022-03-25 01:11
转行这个词汇,一直是职场上此起彼伏的一个热门话题,相信很多朋友都想过或已经经历过转行。工作可谓是我们生存乃至生活的主要收入来源,谁都希望拥有一份高薪又稳定的工作,以此来改善自己的生活和实现自己的大大小小的梦想!但又担心转行后的工作待遇达不到自己的预期,顾虑重重……
不少想进入大数据分析行业的零基础学员经常会有这样一些疑问:大数据分析零基础应该怎么学习?自己适合学习大数据分析吗?人生,就是在不断地做选择,然后在这个选择过程中成长,让自己从一棵小树苗变成参天大树。就是我们每个对大数据充满幻想终于下定决心行动的学员的选择,我们给了自己4个月的时间,想要在大数据分析这个领域汲取养分,让自己壮大成长。
【明确方向】
通过国家的战略规划,看到BAT的大牛们都在大数据行业布局,新闻媒体追捧这大数据分析行业的项目和热点,我想如果我还没有能力独立判断的时候,跟着国家*和互联网大佬们的步调走,这应该是错不了的。
【付诸行动】
明确了方向之后,我就整装待发,刚开始是在网络上购买了很多的视频教程,也买了很多书籍,但是最大的问题就在于,我不知道怎么入手,没关系,有信心有耐心肯定能战胜困难,我坚持了一个月,学习的节奏越来越乱,陆陆续续出现了很多的问题,没人指导,请教了几个业内的朋友,但对方工作繁忙,问了几次之后就不好意思了,自学陷入了死循环。
意识到我学习效率的低下,以及无人指导的问题想想未来的康庄大道,咬咬牙告诉自己,一定好好好学,不然就浪费太多时间最后还会是一无所获。最后找到组织(AAA教育)一起学习进步!
大数据分析零基础学习路线,有信心能坚持学习的话,那就当下开始行动吧!
一、大数据技术基础
1、linux操作基础
linux系统简介与安装
linux常用命令–文件操作
linux常用命令–用户管理与权限
linux常用命令–系统管理
linux常用命令–免密登陆配置与网络管理
linux上常用软件安装
linux本地yum源配置及yum软件安装
linux防火墙配置
linux高级文本处理命令cut、sed、awk
linux定时任务crontab
2、shell编程
shell编程–基本语法
shell编程–流程控制
shell编程–函数
shell编程–综合案例–自动化部署脚本
3、内存数据库redis
redis和nosql简介
redis客户端连接
redis的string类型数据结构操作及应用-对象缓存
redis的list类型数据结构操作及应用案例-任务调度队列
redis的hash及set数据结构操作及应用案例-购物车
redis的sortedset数据结构操作及应用案例-排行榜
4、布式协调服务zookeeper
zookeeper简介及应用场景
zookeeper集群安装部署
zookeeper的数据节点与命令行操作
zookeeper的java客户端基本操作及事件监听
zookeeper核心机制及数据节点
zookeeper应用案例–分布式共享资源锁
zookeeper应用案例–服务器上下线动态感知
zookeeper的数据一致性原理及leader选举机制
5、java高级特性增强
Java多线程基本知识
Java同步关键词详解
java并发包线程池及在开源软件中的应用
Java并发包消息队里及在开源软件中的应用
Java JMS技术
Java动态代理反射
6、轻量级RPC框架开发
RPC原理学习
Nio原理学习
Netty常用API学习
轻量级RPC框架需求分析及原理分析
轻量级RPC框架开发
二、离线计算系统
1、hadoop快速入门
hadoop背景介绍
分布式系统概述
离线数据分析流程介绍
集群搭建
集群使用初步
2、HDFS增强
HDFS的概念和特性
HDFS的shell(命令行客户端)操作
HDFS的工作机制
NAMENODE的工作机制
java的api操作
案例1:开发shell采集脚本
3、MAPREDUCE详解
自定义hadoop的RPC框架
Maprece编程规范及示例编写
Maprece程序运行模式及debug方法
maprece程序运行模式的内在机理
maprece运算框架的主体工作流程
自定义对象的序列化方法
MapRece编程案例
4、MAPREDUCE增强
Maprece排序
自定义partitioner
Maprece的combiner
maprece工作机制详解
5、MAPREDUCE实战
maptask并行度机制-文件切片
maptask并行度设置
倒排索引
共同好友
6、federation介绍和hive使用
Hadoop的HA机制
HA集群的安装部署
集群运维测试之Datanode动态上下线
集群运维测试之Namenode状态切换管理
集群运维测试之数据块的balance
HA下HDFS-API变化
hive简介
hive架构
hive安装部署
hvie初使用
7、hive增强和flume介绍
HQL-DDL基本语法
HQL-DML基本语法
HIVE的join
HIVE 参数配置
HIVE 自定义函数和Transform
HIVE 执行HQL的实例分析
HIVE最佳实践注意点
HIVE优化策略
HIVE实战案例
Flume介绍
Flume的安装部署
案例:采集目录到HDFS
案例:采集文件到HDFS
三、流式计算
1、Storm从入门到精通
Storm是什么
Storm架构分析
Storm架构分析
Storm编程模型、Tuple源码、并发度分析
Storm WordCount案例及常用Api分析
Storm集群部署实战
Storm+Kafka+Redis业务指标计算
Storm源码下载编译
Strom集群启动及源码分析
Storm任务提交及源码分析
Storm数据发送流程分析
Storm通信机制分析
Storm消息容错机制及源码分析
Storm多stream项目分析
编写自己的流式任务执行框架
2、Storm上下游及架构集成
消息队列是什么
Kakfa核心组件
Kafka集群部署实战及常用命令
Kafka配置文件梳理
Kakfa JavaApi学习
Kafka文件存储机制分析
Redis基础及单机环境部署
Redis数据结构及典型案例
Flume快速入门
Flume+Kafka+Storm+Redis整合
四、内存计算体系Spark
1、scala编程
scala编程介绍
scala相关软件安装
scala基础语法
scala方法和函数
scala函数式编程特点
scala数组和集合
scala编程练习(单机版WordCount)
scala面向对象
scala模式匹配
actor编程介绍
option和偏函数
实战:actor的并发WordCount
柯里化
隐式转换
2、AKKA与RPC
Akka并发编程框架
实战:RPC编程实战
3、Spark快速入门
spark介绍
spark环境搭建
RDD简介
RDD的转换和动作
实战:RDD综合练习
RDD高级算子
自定义Partitioner
实战:网站访问次数
广播变量
实战:根据IP计算归属地
自定义排序
利用JDBC RDD实现数据导入导出
WorldCount执行流程详解
4、RDD详解
RDD依赖关系
RDD缓存机制
RDD的Checkpoint检查点机制
Spark任务执行过程分析
RDD的Stage划分
5、Spark-Sql应用
Spark-SQL
Spark结合Hive
DataFrame
实战:Spark-SQL和DataFrame案例
6、SparkStreaming应用实战
Spark-Streaming简介
Spark-Streaming编程
实战:StageFulWordCount
Flume结合Spark Streaming
Kafka结合Spark Streaming
窗口函数
ELK技术栈介绍
ElasticSearch安装和使用
Storm架构分析
Storm编程模型、Tuple源码、并发度分析
Storm WordCount案例及常用Api分析
7、Spark核心源码解析
Spark源码编译
Spark远程debug
Spark任务提交行流程源码分析
Spark通信流程源码分析
SparkContext创建过程源码分析
DriverActor和ClientActor通信过程源码分析
Worker启动Executor过程源码分析
Executor向DriverActor注册过程源码分析
Executor向Driver注册过程源码分析
DAGScheler和TaskScheler源码分析
Shuffle过程源码分析
Task执行过程源码分析
五、机器学习算法
1、python及numpy库
机器学习简介
机器学习与python
python语言–快速入门
python语言–数据类型详解
python语言–流程控制语句
python语言–函数使用
python语言–模块和包
phthon语言–面向对象
python机器学习算法库–numpy
机器学习必备数学知识–概率论
2、常用算法实现
knn分类算法–算法原理
knn分类算法–代码实现
knn分类算法–手写字识别案例
lineage回归分类算法–算法原理
lineage回归分类算法–算法实现及demo
朴素贝叶斯分类算法–算法原理
朴素贝叶斯分类算法–算法实现
朴素贝叶斯分类算法–垃圾邮件识别应用案例
kmeans聚类算法–算法原理
kmeans聚类算法–算法实现
kmeans聚类算法–地理位置聚类应用
决策树分类算法–算法原理
决策树分类算法–算法实现
时下的大数据分析时代与人工智能热潮,相信有许多对大数据分析师非常感兴趣、跃跃欲试想着转行的朋友,但面向整个社会,最不缺的其实就是人才,对于是否转行大数据分析行列,对于能否勇敢一次跳出自己的舒适圈,不少人还是踌躇满志啊!毕竟好多决定,一旦做出了就很难再回头了。不过如果你已经转行到大数据分析领域,就不要后悔,做到如何脱颖而出才是关键。因此本文给出一些建议,针对想要转行大数据分析行列且是零基础转行的小伙伴们,希望对你们有所裨益,也希望你们将来学有所成,不后悔,更不灰心!
相关推荐:
《转行大数据分析师后悔了》、《ui设计培训四个月*大爆料》、《零基础学大数据分析现实吗》、《大数据分析十八般工具》、《大数据分析流程是什么》、《大数据分析12大就业方向》
热心网友 时间:2022-03-25 03:53
企业对数据分析技能需求大体总结如下:
1、SQL数据库的基本操作,会基本的数据管理
2、会用Excel/SQL做基本的数据提取、分析和展示
3、会用脚本语言进行数据分析,Python or R
4、有获取外部数据的能力加分,如爬虫或熟悉公开数据集
5、会基本的数据可视化技能,能撰写数据报告
6、熟悉常用的数据挖掘算法:回归分析、决策树、分类、聚类方法
7、有相应的业务知识和良好的团队合作能力
如何成为数据分析师:
1、懂业务:
熟悉行业知识、公司业务及流程。
2、懂管理:
一是搭建数据分析框架的要求,二是针对数据分析结论提出有指导意义的分析建议。
3、懂分析:
能够掌握数据分析基本原理与一些有效的数据分析方法并能灵活运用到实践工作中。
4、懂工具:
数据分析方法是理论,而数据分析工具帮我们完成数据分析工作。
5、懂设计:
能够运用图表有效表达数据分析师的分析观点,使分析结果一目了然。
热心网友 时间:2022-03-25 06:51
大数据行业就业薪资吸引了很多人的关注,不过大数据技术的特色在于对海量数据进行分布式数据挖掘,会用到大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统等技术点,参加专业的学习成为了人们的普遍选择。热心网友 时间:2022-03-25 10:05
大数据行业就业薪资吸引了很多人的关注,不过大数据技术的特色在于对海量数据进行分布式数据挖掘,会用到大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统等技术点,参加专业的学习成为了人们的普遍选择。