数据挖掘工具有哪些?

发布网友 发布时间:2022-03-23 23:29

我来回答

5个回答

懂视网 时间:2022-03-24 03:51

数据挖掘用RapidMiner、R-Programming和WEKA软件。

  

  数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

  

  

热心网友 时间:2022-03-24 00:59

数据挖掘工具有很多,但我觉得思迈特软件Smartbi Mining数据挖掘平台好用,它通过深度数据建模,为企业提供预测能力支持文本分析、五大类算法和数据预处理,并为用户提供一站式的流程式建模、拖拽式操作和可视化配置体验。

思迈特软件Smartbi Mining数据挖掘平台支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。其中包含了多种可训练的模型:逻辑回归、决策树、随 机森林、朴素贝叶斯、支持向量机、线性回归、K均值、DBSCAN、高斯混合模型。

除提供主要算法和建模功能外,思迈特软件Smartbi Mining数据挖掘平台还提供了必不可少的数据预处理功能,包括字 段拆分、行过滤与映射、列选择、随机采样、过滤空值、合并列、合并行、JOIN、行选择、去除重复值、排序、增加序列号、增加计算字段等。

内置5大类机器学习成熟算法,支持文本分析处理,支持使用Python扩展挖掘算法, 支持使用SQL扩展数据处理能力。思迈特软件Smartbi Mining易学易用,一站式完成数据处理和建模,你值得一试。

数据挖掘工具靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

热心网友 时间:2022-03-24 02:17

前段时间国际权威市场分析机构IDC发布了《中国人工智能软件及应用(2019下半年)跟踪》报告。在报告中,美林数据以11%的市场份额位居中国机器学习开发平台市场榜眼,持续领跑机器学习平台市场。在此之前,2019年IDC发布的《IDC

MarketScape™:中国机器学习开发平台市场评估》中,美林数据就和BAT、微软、AWS等知名一线厂商共同跻身领导者象限,成为中国机器学习开发平台市场中的领导企业之一。

以上都是对美林数据Tempo人工智能平台(简称:TempoAI)在机器学习开发平台领域领先地位的认可,更说明美林数据在坚持自主创新、深耕行业应用道路上的持续努力,得到了业界的广泛认可,并取得了优异成绩。

点此了解详情

Tempo人工智能平台(TempoAI)为企业的各层级角色提供了自助式、一体化、智能化的分析模型构建能力。满足用户数据分析过程中从数据接入、数据处理、分析建模、模型评估、部署应用到管理监控等全流程的功能诉求;以图形化、拖拽式的建模体验,让用户无需编写代码,即可实现对数据的全方位深度分析和模型构建。实现数据的关联分析、未来趋势预测等多种分析,帮助用户发现数据中隐藏的关系及规律,精准预测“未来将发生什么”。

产品特点:

1 极简的建模过程

TempoAI通过为用户提供一个机器学习算法平台,支持用户在平台中构建复杂的分析流程,满足用户从大量数据(包括中文文本)中挖掘隐含的、先前未知的、对决策者有潜在价值的关系、模式和趋势的业务诉求,从而帮助用户实现科学决策,促进业务升级。整个分析流程设计基于拖拽式节点操作、连线式流程串接、指导式参数配置,用户可以通过简单拖拽、配置的方式快速完成挖掘分析流程构建。平台内置数据处理、数据融合、特征工程、扩展编程等功能,让用户能够灵活运用多种处理手段对数据进行预处理,提升建模数据质量,同时丰富的算法库为用户建模提供了更多选择,自动学习功能通过自动推荐最优的算法和参数配置,结合“循环行”功能实现批量建模,帮助用户高效建模,快速挖掘数据隐藏价值。

2 丰富的分析算法

TempoAI集成了大量的机器学习算法,支持聚类、分类、回归、关联规则、时间序列、综合评价、协同过滤、统计分析等多种类型算法,满足绝大多数的业务分析场景;支持分布式算法,可对海量数据进行快速挖掘分析;同时内置了美林公司独创算法,如视觉聚类、L1/2稀疏迭代回归/分类、稀疏时间序列、信息抽取等;支持自然语言处理算法,实现对海量文本数据的处理与分析;支持深度学习算法及框架,为用户分析高维海量数据提供更加强大的算法引擎;支持多种集成学习算法,帮助用户提升算法模型的准确度和泛化能力。

3 智能化的算法选择

TempoAI内置自动择参、自动分类、自动回归、自动聚类、自动时间序列等多种自动学习功能,帮助用户自动选择最优算法和参数,一方面降低了用户对算法和参数选择的经验成本,另一方面极大的节省用户的建模时间成本。

4 全面的分析洞察

为了帮助用户更好、更全面的观察分析流程各个环节的执行情况, TempoAI提供了全面的洞察功能,通过丰富详实的洞察内容,帮助用户全方位观察建模过程任意流程节点的执行结果,为用户开展建模流程的改进优化提供依据,从而快速得到最优模型,发现数据中隐含的业务价值。

5 企业级的成果管理与应用能力

挖掘分析成果,不仅仅止步于模型展示,TempoAI全面支撑成果管理与应用,用户在完成挖掘流程发布后,可基于成果构建服务或调度任务等应用,在成果管理进行统一分类及管理,可根据业务需求选择应用模式:调度任务、异步服务、同步服务、流服务及本地化服务包,满足工程化的不同诉求。提供统一的成果分类统计、在线数量变化趋势、日活跃数量变化趋势、调用热度、失败率排名等成果统计功能,同时提供所有服务的统一监测信息,包括服务的调用情况及运行情况。帮助用户高效便捷的管理成果、利用成果及监测成果。

6 完善的断点缓存机制

TempoAI提供节点的断点缓存机制,包括开启缓存、关闭缓存、清除缓存、从缓存处执行、执行到当前节点、从下一个节点开始执行等功能,为用户在设计端调试建模流程提供了高效便捷的手段,显著提升用户的建模效率。

7 灵活的流程版本及模型版本管理机制

为了方便用户更好的对多次训练产生的挖掘流程和模型进行管理,平台提供了流程版本及模型版本管理功能,支持用户对流程的版本及模型的版本进行记录和回溯,满足用户对流程及模型的管理诉求,提升用户建模体验。

8 跨平台模型迁移及融合能力

TempoAI平台支持PMML文件的导入和导出功能,可以实现跨平台模型之间的迁移和融合,利于用户进行历史模型的迁移,实现用户在不同平台的模型成果快速共享,提升成果的复用性。

9 丰富的行业应用案例

TempoAI支持应用模板功能,针对不同行业的痛点内置了丰富的分析案例,“案例库”一方面为用户学习平台操作和挖掘分析过程提供指导,另一方面可以为用户提供直接或间接的行业分析解决方案。

10 流数据处理功能

TempoAI提供流数据处理功能,包括kafka输入(流)、kafka输出(流)、SQL编辑(流)、数据连接(流)、数据水印(流),满足用户对实时流数据进行处理的需求。

11 一键式建模能力

TempoAI支持一键式建模功能,用户只需输入数据,该功能可以自动完成数据处理、特征工程、算法及参数选择及模型评估等环节。节省了用户AI建模的时间,提升了建模效率。让用户将有限的精力更多的关注到业务中,将建模工作交给平台,从而进一步降低AI建模的门槛。

热心网友 时间:2022-03-24 03:51

SQL Server是数据库,但内建数据挖掘功能,若提到工具的话,大概有SAS, SPSS, Statistica(Dell), R, Revolution R...

热心网友 时间:2022-03-24 05:43

比如SQL Server。
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com