大数据怎么学习

发布网友 发布时间:2022-03-27 06:49

我来回答

13个回答

热心网友 时间:2022-03-27 08:18

第一阶段:大数据技术入门

1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。

2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令操作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用操作,磁盘基本管理命令,内存使用监控命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手操作,将理论付诸实践。

3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。

第二阶段:海量数据高级分析语言

Scala是一门多范式的编程语言,类似于java,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的操作。

第三阶段:海量数据存储分布式存储

1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。

2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际操作才能熟练。

第四阶段:海量数据分析分布式计算

1HadoopMapRece分布式计算:是一种编程模型,用于打过莫数据集的并行运算。

2Hiva数据挖掘:对其进行概要性简介,数据定义,创建,修改,删除等操作。

3Spare分布式计算:Spare是类MapRece的通用并行框架。

第五阶段:考试

1技术前瞻:对全球最新的大数据技术进行简介。

2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数据技能认证书。

上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。

热心网友 时间:2022-03-27 09:36

第一方面是数学基础,第二方面是统计学基础,第三方面是计算机基础。要想在数据分析的道路上走得更远,一定要注重数学和统计学的学习。数据分析说到底就是寻找数据背后的规律,而寻找规律就需要具备算法的设计能力,所以数学和统计学对于数据分析是非常重要的。

而想要快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用过程中,辅助算法以及行业致死的学习。学习数据分析工具往往从Excel工具开始学起,Excel是目前职场人比较常用的数据分析工具,通常在面对10万条以内的结构化数据时,Excel还是能够胜任的。对于大部分职场人来说,掌握Excel的数据分析功能能够应付大部分常见的数据分析场景。

在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。

数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

热心网友 时间:2022-03-27 11:11

近期,经常听到这样一句特别豪气的话“我家里有矿”!对于数据而言,没有大数据技术的数据一无是处,但经过大数据技术处理的数据,就是金矿,价值连城!
面临能将“矿”玩弄于股掌之间的大数据技术,谁能坐怀不乱?谁又能忍心放弃这个难得的机遇呢?那么问题来了,该如何学习大数据技术呢?学习是一项很好的技能,但也需要循序渐进!
学习大数据的头一步:打好基础,比高*格的大数据技术更重要!而基础知识就是:编程语言和linux操作系统。
我们以java编程为例,当然了你所擅长的编程语言也可以是python、Scala等!

Java:只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下,有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

接下来就是大数据技术的两大生态系统:Hadoop生态系统和spark生态系统。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好的利用HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。

Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
以上很多都是必须的理论技术知识,想要成功就业,光纸上谈兵不行,还需要一定的实战经验才行,寻找一些大数据相关的项目进行练练手,巩固一下自己的技术。

以上就是对如何学习大数据的简单总结,如果学完之后仍有余力,自然也是可以学习机器学习、人工智能等技术知识吗,对你以后的就业会有很大的优势!

热心网友 时间:2022-03-27 13:02

大数据开发技术所涵盖的技术体系是比较庞大的,小伙伴想要学好大数据开发技术知识,是需要具有一定的编程基础知识的沉淀,而且还需要有一定的数学和统计学基础。
1.相关基础知识的学习积累
小伙伴初学大数据开发技术主要以基础知识为主,涉及到操作系统(Linux)、数据库、编程语言(Java、Python、Scala)、算法设计基础以及统计学基础知识。这一过程虽然内容比较多,还好所学到知识都不是很难。对于零基础小伙伴在这一阶段的学习过程中,最好是能够写一些相关的小项目,同时通过大数据培训班老师的指导,相信很快能够达到入门的阶段性学习。
2.大数据平台开发学习
接下来学习的内容主要以大数据平台为主,对于初学大数据开发技术的小伙伴来说最好选择开源的大数据平台,比如Hadoop、Spark就是不错的选择,而且大数据培训班都会有相关的案例为你提供一些学习资料,让小伙伴更容易上手学习。
3.项目实战案例的练习
小伙伴想要学好大数据开发技术知识,除了理论基础知识的积累,还需要结合相关的项目实战案例的练习来深入学习理解大数据开发技术知识,实践的内容主要分为三个大的任务,分别是大数据应用开发、大数据分析和大数据运维,由于不同的岗位往往需要掌握不同的实践能力,所以掌握更多的实践知识能够在一定程度上提升自己的岗位适应能力。

热心网友 时间:2022-03-27 15:10

兴趣是第一老师。选择学习一门课程和技能时,个人兴趣是至关重要,对于学习像大数据这样抽象的技能更是如此。

学习Java语言和Linux操作系统,这两个是学习大数据的基础。

最关键的是学习Hadoop+spark,掌握大数据的收集、生成、调用工具。

树立大数据思维,创造性开发、使用大数据。

深度了解大数据的意义、价值、市场、开发及运用前景。

到大数据管理中心、运用企业实习实践,掌握开发、运用技能。

热心网友 时间:2022-03-27 17:35

如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题。由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文来说说到底要怎么学习它,以及怎么避免大数据学习的误区,以供参考。
大数据要怎么学:数据科学特点与大数据学习误区
(1)大数据学习要业务驱动,不要技术驱动:数据科学的核心能力是解决问题。
大数据的核心目标是数据驱动的智能化,要解决具体的问题,不管是科学研究问题,还是商业决策问题,抑或是*管理问题。
所以学习之前要明确问题,理解问题,所谓问题导向、目标导向,这个明确之后再研究和选择合适的技术加以应用,这样才有针对性,言必hadoop,spark的大数据分析是不严谨的。
不同的业务领域需要不同方向理论、技术和工具的支持。如文本、网页要自然语言建模,随时间变化数据流需要序列建模,图像音频和视频多是时空混合建模;大数据处理如采集需要爬虫、倒入导出和预处理等支持,存储需要分布式云存储、云计算资源管理等支持,计算需要分类、预测、描述等模型支持,应用需要可视化、知识库、决策评价等支持。所以是业务决定技术,而不是根据技术来考虑业务,这是大数据学习要避免的第一个误区。
(2)大数据学习要善用开源,不要重复造轮子:数据科学的技术基因在于开源。IT前沿领域的开源化已成不可逆转的趋势,Android开源让智能手机平民化,让我们跨入了移动互联网时代,智能硬件开源将带领跨入物联网时代,以Hadoop和Spark为代表的大数据开源生态加速了去IOE(IBM、ORACLE、EMC)进程,倒*传统IT巨头拥抱开源,谷歌和OpenAI联盟的深度学习开源(以Tensorflow,Torch,Caffe等为代表)正在加速人工智能技术的发展。
数据科学的标配语言R和Python更是因开源而生,因开源而繁荣,诺基亚因没把握开源大势而衰落。为什么要开源,这得益于IT发展的工业化和构件化,各大领域的基础技术栈和工具库已经很成熟,下一阶段就是怎么快速组合、快速搭积木、快速产出的问题,不管是linux,anroid还是tensorflow,其基础构件库基本就是利用已有开源库,结合新的技术方法实现,组合构建而成,很少在重复造轮子。
另外,开源这种众包开发模式,是一种集体智慧编程的体现,一个公司无法积聚全球工程师的开发智力,而一个GitHub上的明星开源项目可以,所以要善用开源和集体智慧编程,而不要重复造轮子,这是大数据学习要避免的第二个误区。
(3)大数据学习要以点带面,不贪大求全:数据科学要把握好碎片化与系统性。根据前文的大数据技术体系分析,我们可以看到大数据技术的深度和广度都是传统信息技术难以比拟的。
我们的精力很有限,短时间内很难掌握多个领域的大数据理论和技术,数据科学要把握好碎片化和系统性的关系。
何为碎片化,这个碎片化包括业务层面和技术层面,大数据不只是谷歌,亚马逊,BAT等互联网企业,每一个行业、企业里面都有它去关注数据的痕迹:一条生产线上的实时传感器数据,车辆身上的传感数据,高铁设备的运行状态数据,交通部门的监控数据,医疗机构的病例数据,*部门的海量数据等等,大数据的业务场景和分析目标是碎片化的,而且相互之间分析目标的差异很大;另外,技术层面来讲,大数据技术就是万金油,一切服务于数据分析和决策的技术都属于这个范畴,其技术体系也是碎片化的。
那怎么把握系统性呢,不同领域的大数据应用有其共性关键技术,其系统技术架构也有相通的地方,如系统的高度可扩展性,能进行横向数据大规模扩张,纵向业务大规模扩展,高容错性和多源异构环境的支持,对原有系统的兼容和集成等等,每个大数据系统都应该考虑上述问题。如何把握大数据的碎片化学习和系统性设计,离不开前面提出的两点误区,建议从应用切入、以点带面,先从一个实际的应用领域需求出发,搞定一个一个技术点,有一定功底之后,再举一反三横向扩展逐步理解其系统性技术。
(4)大数据学习要勇于实践,不要纸上谈兵:数据科学还是数据工程?
大数据只有和特定领域的应用结合起来才能产生价值,数据科学还是数据工程是大数据学习要明确的关键问题,搞学术发paper数据科学OK,但要大数据应用落地,如果把数据科学成果转化为数据工程进行落地应用,难度很大,这也是很多企业质疑数据科学价值的原因。且不说这种转化需要一个过程,从业人员自身也是需要审视思考的。
工业界包括*管理机构如何引入研究智力,数据分析如何转化和价值变现?数据科学研究人员和企业大数据系统开发工程人员都得想想这些关键问题。
目前数据工程要解决的关键问题主线是数据(Data)>知识(Knowledge)>服务(Service),数据采集和管理,挖掘分析获取知识,知识规律进行决策支持和应用转化为持续服务。解决好这三个问题,才算大数据应用落地,那么从学习角度讲,DWS就是大数据学习要解决问题的总目标,特别要注重数据科学的实践应用能力,而且实践要重于理论。从模型,特征,误差,实验,测试到应用,每一步都要考虑是否能解决现实问题,模型是否具备可解释性,要勇于尝试和迭代,模型和软件包本身不是万能的,大数据应用要注重鲁棒性和实效性,温室模型是没有用的,训练集和测试集就OK了吗?
大数据如何走出实验室和工程化落地,一是不能闭门造车,模型收敛了就想当然万事大吉了;二是要走出实验室充分与业界实际决策问题对接;三是关联关系和因果关系都不能少,不能描述因果关系的模型无助于解决现实问题;四是注重模型的迭代和产品化,持续升级和优化,解决新数据增量学习和模型动态调整的问题。
所以,大数据学习一定要清楚我是在做数据科学还是数据工程,各需要哪些方面的技术能力,现在处于哪一个阶段等,不然为了技术而技术,是难以学好和用好大数据的。

热心网友 时间:2022-03-27 20:16

大数据是很不错的,像大数据这样的专业还是一线城市比较好,师资力量跟得上、就业的薪资也是可观的,学习大数据可以按照路线图的顺序,

热心网友 时间:2022-03-27 23:14

所以要做大数据分析,肯定是至少要会一种编程语言的,不然你不能指望用诸如Excel的软件去处理大数据吧,而且就算使用Excel,处理大数据也比较慢,而且还需要学习Excel的很多内置函数,稍微高级一点的就使用Excel SQL,这样也得学习SQL语言
可以来这边看看,毕竟互联网it学校

热心网友 时间:2022-03-28 02:29

学习大数据,首先我觉得 得有一定的基础吧。理工科方面比较强会学得得心应手一些,如果是纯文科毕业的话,学起来会比较吃力,因为大数据学习会涉及很多数字模型、软件分析之类的,所以兴趣很重要,不然到时会感到非常受挫。

热心网友 时间:2022-03-28 06:00

我建议你报个培训班,系统学习下
现在市场上的大数据培训可以分为这么几类:
第一类:口碑和就业,课程都比较好的,自然是光环大数据,飞马训练营,都不错
第二类:规模比较大而且教学环境比较好的:大内
第三类:产品比较全,但都做的一般,前锋,品观,尚学堂等等(其实前锋在刚成立的时候,做的不错,只是现在慢慢的不行了)

热心网友 时间:2022-03-28 09:48

大数据学习方法、大数据学习路线图

第1阶段Java

第2阶段JavaEE核心

第3阶段Hadoop生态体系

第4阶段大数据spark生态体系

热心网友 时间:2022-03-28 13:53


希望对你有帮助!

热心网友 时间:2022-03-28 18:14

大数据学习路线

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com