第三代移动通信比起2代来都有一些什么好处?
发布网友
发布时间:2022-04-19 09:45
我来回答
共3个回答
热心网友
时间:2023-07-10 03:51
简单的说就是高速。
高速能带来很多应用。
就想原来的56k和现在的宽带一样。
热心网友
时间:2023-07-10 03:52
第三代移动通信标准IMT-2000K中 ,提出了对频谱和业务上的基本要求,即有名的2GHz频段和384kb/s广域网和2Mb/s本地网数据传输速率业务等。显然,要实现第三代移动通信系统中的基本要求,首选必须解决频谱、核心网络和无线接入三大技术因素。
(1)必须确定全球统一的频谱段。IMT-2000标准确定在2GHz左右的频段,而美国联邦通信委员会却在1994年就把PCS定位在1.9GHz,并已拍卖,使得第三代移动通信系统建立统一频谱出现了裂痕。
(2)必须建立统一的核心网络系统。第三代移动通信系统标准将是在第二代移动通信系统的核心网络基础上,逐步将电路交换演变成高速电路交换与分组交换相结合的核心网络。现在世界上存在两大移动通信系统核心网络,即GSM-MAP和ANSI-41,国际电联已决定将两大网络都定为第三代核心网络。因此,要实现全球漫游,就必须通过信令转换器把它们连接起来,形成逻辑上的统一核心网络系统。
(3)必须考虑多频谱的无线接入方案。国际电联称之为无线传输技术(RTT)的无线接入方案,可以分为两大类,一类是建立在现有频段上把现有无线接入技术革新演变成能为第三代移动通信提供业务的RTT,这里最重要的是考虑反向兼容要求,其中工作频段在900/1800/1900MHz的GSM、北美的D-AMPS和窄带CDMA(IS-95)都在考虑向第三代过渡的反向兼容性。一类是直接工作在新的频段上,即IMT-2000制订的2GHz频段上,为第三代移动通信开发出新的无线传输技术,即宽带CDMA技术。
2、第三代移动通信标准中的主要技术
带来第三代移动通信系统天翻地覆变化的当然是第三代移动通信中所采用的多种高新技术,这些高新技术是第三代移动通信系统的精髓,也是制订第三代移动通信系统标准的基础,了解这些技术就了解了第三代移动通信系统。下面我们就专门介绍几项有可能应用于第三代移动通信系统中的技术。
(1)TD-SCDMA技术。TD-SCDMA是中国唯一提交的关于第三代移动通信的标准技术,它使用了第二代和第三代移动通信中的所有接入技术,包括TDMA、CDMA和SDMA,其中最关键的创新部分是SDMA。SDMA可以在时域/频域之外用来增加容量和改善性能, SDMA的关键技术就是利用多天线对空间参数进行估计,对下行链路的信号进行空间合成。另外,将CDMA与SDMA技术结合起来也起到了相互补充的作用,尤其是当几个移动用户靠得很近并使得SDMA无法分出时,CDMA就可以很轻松地起到分离作用了,而SDMA本身又可以使相互干扰的CDMA用户降至最小。SDMA技术的另一重要作用是可以大致估算出每个用户的距离和方位,可应用于第三代移动通信用户的定位,并能为越区切换提供参考信息。总的来讲,TD-SCDMA有价格便宜、容量较高和性能优良等诸多优点。
(2)智能天线技术:智能天线技术是中国标准TD-SDMA中的重要技术之一,是基于自适应天线原理的一种适合于第三代移动通信系统的新技术。它结合了自适应天线技术的优点,利用天线阵列的波束汇成和指向,产生多个独立的波束,可以自适应地调整其方向图以跟踪信号的变化,同时可对干扰方向调零以减少甚至抵消干扰信号,增加系统的容量和频谱效率。智能天线的特点是能够以较低的代价换得天线覆盖范围、系统容量、业务质量、抗阻塞和抗掉话等性能的提高。智能天线在干扰和噪声环境下,通过其自身的反馈控制系统改变辐射单元的辐射方向图、频率响应及其他参数,使接收机输出端有最大的信噪比。
(3)WAP技术。WAP(Wireless Application Protocol,无线应用协议)已经成为数字移动电话和其他无线终端上无线信息和电话服务的实际世界标准。WAP可提供相关服务和信息,提供其他用户进行连接时的安全、迅速、灵敏和在线的交互方式。WAP驻留在因特网上的TCP/IP环境和蜂窝传输环境之间,但是独立于所使用的传输机制,可用于通过移动电话或其他无线终端来访问和显示多种形式的无线信息。
WAP规范既利用了现有技术标准中适应于无线通信环境的部分,又在此基础上进行了新的扩展。由于WAP技术位于GSM网络和因特网之间,一端连接现有的GSM网络,一端连接因特网。因此,只要用户具有支持WAP协议的媒体电话,就可以进入互联网,实现一体化的信息传送。而厂商使用该协议,则可以开发出无线接口独立、设备独立和完全可以交互操作的手持设备Internet接入方案,从而使得厂商的WAP方案能最大限度地利用用户对Web服务器、Web开发工具、Web编程和Web应用的既有投资,保护用户现有利益。同时也解决了无线环境所带来的有关新问题。目前,全球各大移动电话制造商,包括诺基亚、爱立信、摩托罗拉和阿尔卡特在内,都已保证提供支持WAP的无线设备。
(4)快速无线IP技术。快速无线IP(Wireless IP,无线互联网)技术将是未来移动通信发展的重点,宽频带多媒体业务是最终用户的基本要求。根据ITM-2000的基本要求,第三代移动通信系统可以提供较高的传输速度(本地区2Mb/s,移动144Kb/s)。现代的移动设备越来越多了(手机、笔记本电脑、PDA等),剩下的好像就是网络是否可以移动,无线IP技术与第三代移动通信技术结合将会实现这个愿望。由于无线IP主机在通信期间需要在网络上移动,其IP地址就有可能经常变化,传统的有线IP技术将导致通信中断,但第三代移动通信技术因为利用了蜂窝移动电话呼叫原理,完全可以使移动节点采用并保持固定不变的IP地址,一次登录即可实现在任意位置上或在移动中保持与IP主机的单一链路层连接,完成移动中的数据通信。
(5)软件无线电技术。在不同工作频率、不同调制方式、不同多址方式等多种标准共存的第三代移动通信系统中,软件无线电技术是一种最有希望解决这些问题的技术之一。软件无线电技术可将模拟信号的数字化过程尽可能地接近天线,即将AD转换器尽量靠近RF射频前端,利用DSP的强大处理能力和软件的灵活性实现信道分离、调制解调、信道编码译码等工作,从而可为第二代移动通信系统向第三代移动通信系统的平滑过渡提供一个良好的无缝解决方案。
第三代移动通信系统需要很多关键性技术,软件无线电技术基于同一硬件平台,通过加载不同的软件,就可以获得不同的业务特性,这对于系统升级、网络平滑过渡、多频多模的运行情况来讲,相对简单容易、成本低廉,因此对于第三代移动通信系统的多模式、多频段、多速率、多业务、多环境的特殊要求特别重要。所以在未来移动通信应用中有着广泛的应用意义,不仅可改变传统观念,还将为移动通信的软件化、智能化、通用化、个人化和兼容性带来深远影响。
(6)多载波技术。多载波MC-CDMA是第三代移动通信系统中使用的一种新技术。多载波CDMA技术早在1993年的PIMRC会议上就被提出来了。目前,多载波CDMA作为一种有着良好应用前景的技术,已吸引了许多公司对此进行深入研究。多载波CDMA技术的研究内容大致有两类:一是用给定扩频码来扩展原始数据,再用每个码片来调制不同的载波。另一种是用扩频码来扩展已经进行了串并变换后的数据流,再用每个数据流来调制不同的载波。
(7)多用户检测技术。在CDMA系统中,由于码间不正交,会引起多址干扰(MAI),而多址干扰将会*系统容量,为了消除多址干扰影响,人们提出了利用其他用户的已知信息去消除多址干扰的多用户检测技术。多用户检测技术分为两大类:线性多用户检测和相减去干扰检测。在线性多用户检测中,对传统的解相器软输出的信号进行一种线性的映射(变换)以期产生新的一组有希望提供更好性能的输出。在相减去干扰检测中,可产生对干扰的预测并使之减小。目前,CDMA系统中的多用户检测技术还存在一定的局限,主要表现在:多用户检测只是消除了小区内的干扰,而对小区间的干扰还是无法消除;算法相当复杂,不易在实际系统中实现。多用户检测技术的局限是暂时的,随着数字信号处理技术和微电子技术的发展,降低复杂性的多用户检测技术必将在第三代移动通信系统中得到广泛的应用。
HSDPA(高速下行分组接入)用于实现WCDMA网络高速下行数据业务,可以使下行的数据速率达到8~10Mbps,被誉为后3G时代的主要解决方案。对采用多入多出(MIMO)技术的HSDPA系统,数据速率可以达到20Mbps。HSDPA的出现引起了业界的极大关注。作为WCDMA体系的后续演进技术,HSDPA中的许多关键技术与cdma20001XEV/DV以及TD-SCDMA中的一些关键技术有异曲同工之妙,因此,适时研究HSDPA,对于我们全面了解后3G时代的技术走向十分重要。
在HSDPA技术方案中,涉及到的关键技术主要包括4种:自适应编码调制、H-ARQ、快速蜂窝选择(FCS)、多入多出天线处理(MIMO)。
自适应编码调制
自适应调制与编码(AMC)也属于链路自适应的范畴。AMC的基本原理就是改变调制和编码的格式并使它在系统*范围内和信道条件相适应,而信道条件则可以通过发送反馈来估计。在AMC系统中,一般用户在理想信道条件下用较高阶的调制方式和较高的编码速率,而在不太理想的信道条件下则用较低阶的调制编码方式。
采用AMC的好处主要有:处于有利位置的用户可以具有更高的数据速率,由此蜂窝平均吞吐量得到提高;在链路自适应过程中,通过调整调制编码方案而不是调整发射功率的方法可以降低干扰水平。
目前实现AMC面临几项挑战。首先,AMC对测量误差和延迟比较敏感,为了选择适合的调制方式,必须首先知道信道的质量,对信道估测的错误可能会使系统选择错误的数据传输数据率,使传输功率过高,浪费系统容量或者因功率太低而出现误码率升高;其次,由于移动信道的时变特性,信道测量报告的延迟降低了信道质量估计的可靠性;另外,干扰的变化也增加测量的误差,此时可以寻求与其它技术的结合,比如利用混合判决反馈重传技术(H-ARQ)可以降低MCS的要求识别和对测量误差和流量波动的敏感性。
H-ARQ
H-ARQ也是一种链路自适应的技术。在AMC中,采用显式的C/I测量来设定调制编码的格式,而在H-ARQ中,链路层的信息用于进行重传判决。
有很多方法可以实现H-ARQ:Chase合并、兼容速率凿孔TurboCodes和增量冗余。Chase合并的策略是发送有相同编码的数据组,然后在接收端可以将这些多个重发信息进行SNR加权合并来获得分集接收再进行译码。增量冗余或H-ARQ-II是实现H-ARQ的另一种方式。这种策略是在第一次译码失败时另外再传送附加冗余信息而不是再将整个数据码组重发一次。H-ARQ-type-Ⅲ也是增量冗余方案中的一种,然而在H-ARQ-type-Ⅲ中,每次的重传是可以自解码的,这一点与HARQ-II不同。在多冗余的H-ARQ-type-Ⅲ中,每次重发冗余信息时要对不同的比特进行打孔。
AMC可以根据UE的测定或者网络提供的信息条件来灵活地选择适当的MCS,但需要UE进行准确信道测量并且受到相应延迟的影响。H-ARQ能够自动地适应信道条件的变化并且对测量误差和时延不敏感。AMC和H-ARQ二者结合起来可以得到最好的效果——AMC提供粗略的数据速率选择而H-ARQ可以根据数据信道条件对数据速率进行较精细的调整。
快速蜂窝选择
FCS是为HSDPA而推荐使用的。使用FCS,UE能指示一个最好的小区用于下行链路。确定“最好的”蜂窝不仅要基于无线信号传播的条件,还要考虑在Activeset中小区的功率和码字空间的资源。一般而言,同时有很多小区处于activeset,但只有最适合的小区基站允许发送,这样可以降低干扰提高系统容量。
在离小区中心较远的边缘,每个信道质量都比较低。使用FCS策略可以选择一个服务小区使得链路的质量相对稳定。它是通过C/I和上行DCCH的小区指示信息来对各个小区进行比较的。FCS对物理层方面的要求和Release99中的选择性分集发射(SSDT)相似。
如果使用Node-B之间的单元选择,在HSDPA调度和终端就绪之后,需要实现HARQ状态和调度表的同步。一种传输状态同步的方法是通过空中传播的物理层实现的。如果FCS可以选择变化的Node-B,那么就需要让所有的Node-B都能侦测到上行链路的物理层发送信号,而这和常规的上行链路功率控制策略矛盾。它这种策略不能确定上行链路发送信号能被所有的Node-B侦测。有两种途径可以解决:使用改进的上行链路功率策略,当任何Node-B需要时,UE的传递功率都能相应增加;第二种方式还是使用常规的功率控制策略,但加上一个功率偏移来保证传输状态能被新的Node-B侦测。这两种方式中,优先推举第二种方式。但是,必须评估需要多大的功率偏置及其对整个系统的性能影响。
MIMO技术
多入多出(MIMO)系统是在发送和接收端同时使用多天线,这样相对于只在发送端使用多个天线有更多好处。在MIMO系统中,通过码复用技术可以使峰值吞吐量得到提高。
采用码复用技术后,为HS-DSCH分配的信道/扰码对用来调制M个独立的数据流(M为发送的天线数)。复用了相同信道化码、扰码的数据必须用空间参数加以区分,这要求在接收端使用至少M个天线。在理论上,使用码复用的峰值传输速率是单天线传送的M倍。通过码复用可以结合码复用技术和一个较低阶的星座调制如16QAM来达到一个适中的数据传输速率,而若不采用码复用技术,达到相同的数据速率可能需要采用64QAM调制。相对于使用单天线传送加上较高阶的星座调制达到的相同速率,码复用技术可以降低对Eb/N0的要求,从而提高整个系统的性能。
在关注HSDPA中使用的MIMO技术时,重点集中在具有代表性的开环方式MIMO。在常规单天线发送的HSDPA中,一组下行信道(N个)在多个用户间共享。使用M个发射天信的开环MIMO,也使用同样数量的下行信道码,但是每个码字被复用了M次,并且每个码字用来调制不同的数据子串。特别的数据以更高的编码速率进行编码、速率匹配和交织。
对于UE的联合检测,在每个收发天线对之间都要进行复信道估计。在平坦衰落信道下,信道的特性可以由MP个复信道因子来确定。在频率选择性衰落信道下,信道特性可以由LPM个复信道因子刻画,其中L是RAKE接收机的Finger数。信道估计可以通过接收信号和M个正交导频序列相关运算获得。对比常规的单天线接收机,信道估计复杂度提高了MP倍。对数据检测,每个天线后面都要接针对N个扩频码的匹配滤波器。一般来说,每个天线需要LP个解扩器。对于MN个数据子流的每个子流,对应LP个解扩器输出,每个输出用对应信道估计的复共轭进行加权,然后加在一起构成充分统计量。这个过程称为空时RAKE接收,是单天线RAKE接收在多天线处理情况下的扩展。
共享同一个码字的M个数据子串的充分统计量(向量)中的每个量(标量)包含了空间多址干扰,然而在平坦衰落信道下,因为在信道传送过程中码字的正交性得到了保持,作为一组(Group)的这些子串并不受到其它码字所产生子串的干扰。对M个编码子串中的每一组,采用多用户检测来消除MAI的影响。可采用的多用户检测方法包括最大似然检测和VerticalBLAST检测。最大似然检测方法可以通过充分统计向量的噪声方差直接推导出来,但是最大似然检测的复杂度是随M呈指数增长的,因此,次最优但复杂度较低的V-BLAST是较可行的方法。V-BLAST检测器包括两部分:一个线性变换和一个串行干扰抵消器,线性变换通过迫零算法或最小均方误差准则消除MAI,经过线性变换后,子流中的具有最高信噪比编码符号被检测出来,并抽取出充分统计量中的对应信号。使用修正过的充分统计量,线性变换和干扰抵消重复进行,直到所有的子串都被检测出来。经过MIMO检测器后,MN个子串恢复成高速数据流,解映射到比特,然后解交织、译码。
热心网友
时间:2023-07-10 03:53
.900/1800MHz GSM第二代数字蜂窝移动通信业务
900/1800MHz GSM第二代数字蜂窝移动通信(简称GSM移动通信)业务是指利用工作在900/1800MHz频段的GSM移动通信网络提供的话音和数据业务。GSM移动通信系统的无线接口采用TDMA技术,核心网移动性管理协议采用MAP协议。
900/1800MHz GSM第二代数字蜂窝移动通信业务包括以下主要业务类型:
-端到端的双向话音业务。
-移动消息业务,利用GSM网络和消息平台提供的移动台发起、移动台接收的消息业务。
-移动承载业务以及其上的移动数据业务。
-移动补充业务,如主叫号码显示、呼叫前转业务等。
-经过GSM网络与智能网共同提供的移动智能网业务,如预付费业务等。
-国内漫游和国际漫游业务。
900/1800MHz GSM第二代数字蜂窝移动通信业务的经营者必须自己组建GSM移动通信网络,所提供的移动通信业务类型可以是一部分或全部。提供一次移动通信业务经过的网络可以是同一个运营者的网络,也可以由不同运营者的网络共同完成。提供移动网国际通信业务,必须经过国家批准设立的国际通信出入口。
2.800MHz CDMA第二代数字蜂窝移动通信业务
800MHz CDMA第二代数字蜂窝移动通信(简称CDMA移动通信)业务是指利用工作在800MHz频段上的CDMA移动通信网络提供的话音和数据业务。CDMA移动通信的无线接口采用窄带码分多址CDMA技术,核心网移动性管理协议采用IS-41协议。
800MHz CDMA第二代数字蜂窝移动通信业务包括以下主要业务类型:
-端到端的双向话音业务。
-移动消息业务,利用CDMA网络和消息平台提供的移动台发起、移动台接收的消息业务。
-移动承载业务以及其上的移动数据业务。
-移动补充业务,如主叫号码显示、呼叫前转业务等。
-经过CDMA网络与智能网共同提供的移动智能网业务,如预付费业务等。
-国内漫游和国际漫游业务。
800MHz CDMA第二代数字蜂窝移动通信业务的经营者必须自己组建CDMA移动通信网络,所提供的移动通信业务类型可以是一部分或全部。提供一次移动通信业务经过的网络,可以是同一个运营者的网络,也可以由不同运营者的网络共同完成。提供移动网国际通信业务,必须经过国家批准设立的国际通信出入口。
3.第三代数字蜂窝移动通信业务
第三代数字蜂窝移动通信(简称3G移动通信)业务是指利用第三代移动通信网络提供的话音、数据、视频图像等业务。
第三代数字蜂窝移动通信业务的主要特征是可提供移动宽带多媒体业务,其中高速移动环境下支持144kb/s速率,步行和慢速移动环境下支持384kb/s速率,室内环境支持2Mb/s速率的数据传输,并保证高可靠的服务质量(QoS)。第三代数字蜂窝移动通信业务包括第二代蜂窝移动通信可提供的所有的业务类型和移动多媒体业务。
第三代数字蜂窝移动通信业务的经营者必须自己组建3G移动通信网络,所提供的移动通信业务类型可以是一部分或全部。提供一次移动通信业务经过的网络,可以是同一个运营者的网络设施,也可以由不同运营者的网络设施共同完成。提供移动网国际通信业务,必须经过国家批准设立的国际通信出入口。