什么是充要条件
发布网友
发布时间:2022-04-19 18:01
我来回答
共5个回答
好二三四
时间:2022-07-18 07:46
四种命题分别为原命题,逆命题,否命题,逆否命题。
原命题:一个命题的本身称之为原命题。
逆命题:将原命题的条件和结论颠倒的新命题。
否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序。
逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题。
充要条件:即充分必要条件。如果能从命题一推出命题二,而且也能从命题二推出命题一。那么称命题一是命题二的充分必要条件,且命题二也是命题一的充分必要条件。
热心网友
时间:2023-07-15 17:44
充要条件 充要条件(the necessary and sufficient conditions) 如果能从命题p推出命题q,那么条件p是条件q的充分条件 如果能从命题q推出命题p ,那么条件p是条件q的必要条件 如果能从命题p推出命题q,且能从命题q推出命题p,那么 条件q与条件p互为充分必要条件,简称充要条件。 以上是从逻辑推理关系说明。 我们也可以从元素、集合的角度看 集合A=集合B 则A是B的充分必要条件,简称充要条件。 如果命题A是命题B的充要条件,那么命题B也是命题A的充要条件。 “充分条件”“必要条件”的概念:当“若p则q”形式的命题为真时,称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假。 简单的说就是在p与q能相互推出时,他们就互为充要条件。由一个命题推出另一个命题,前者是后者的充分条件,后者是前者的必要条件。 举例:1、矩形对边平行。 对于这个命题,“该四边形是矩形”是“该四边形对边平行”的充分(不必要)条件。 “该四边形对边平行”是“该四边形是矩形”的必要条件。 2、平行四边形两组对边分别平行。 “该四边形为平行四边形”与“该四边形两组对边分别平行”互为充要条件。 如果p<=>q,那么p与q互为充要条件。
热心网友
时间:2023-07-15 17:44
1.对充要条件的理解
对于命题“若p则q”,即p是条件,q为结论.
(1)如果已知p
q,我们就说p是q的充分条件,q是p的必要条件.
例如,“若x=y,x2=y2”是一个真命题,可写成
x=y
x2=y2
“x=y”是“x2=y2”的充分条件,
“x2=y2”是“x=y”的必要条件.
(2)如果既有p
q,又有q
p,就记作
p
q.
这时,p既是q的充分条件,又是q的必要条件,我们就说p是q的充分必要条件,简称充要条件.
例如,命题p:x+2是无理数,
命题q:x是无理数.
由于“x+2是无理数”
“x是无理数”,所以p是q的充要条件.
2.从逻辑推理关系上看
充分条件、必要条件和充要条件是重要的数学概念,主要是用来区分命题的条件p和结论q之间的下列关系:
①若p
q,但q
p,则p是q的充分但不必要条件;
②若q
p,但p
q,则p是q的必要但不充分条件;
③若p
q,但q
p,则p是q的充要条件;
④若p
q,且┒p
┒q,则p是q的充要条件;
⑤若p
p,且q
p,则p既不是q的充分条件,也不是q的必要条件.
3.从集合与集合之间关系上看
若条件p以集合A的形式出现,结论q以集合B的形式出现,则
①A
B,则p是q的充分条件;
②若A
B,则p是q的必要条件;
③若A=B,则p是q的充要条件;
④若AB,且AB,则p既不是q的充分条件,也不是q的必要条件.
从集合的观点来判断充要条件的思考方法,可以进一步加深对充要条件的理解.
4.应用充分条件,必要条件,充要条件时须注意的问题.
(1)充分而不必要条件,必要而不充分条件,充要条件,既不充分也不必要条件,反映了条件p和结论q之间的因果关系,在结合具体问题进行判断时,要注意以下几点:
①确定条件是什么,结论是什么;
②尝试从条件推结论,结论推条件;
③确立条件是结论的什么条件;
④要证明命题的条件是主要的,就既要证明原命题成立,又要证明它的逆命题成立,证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.
(2)对于充要条件,要熟悉它的同义词语.
在解题时常常遇到与充要条件同义的词语,如“当且仅当”“必须且只须”“等价于”“……反过来也成立”.准确地理解和使用数学语言,对理解和把握数学知识是十分重要的.
热心网友
时间:2023-07-15 17:45
1.对充要条件的理解
对于命题“若p则q”,即p是条件,q为结论.
(1)如果已知p
q,我们就说p是q的充分条件,q是p的必要条件.
例如,“若x=y,x2=y2”是一个真命题,可写成
x=y
x2=y2
“x=y”是“x2=y2”的充分条件,
“x2=y2”是“x=y”的必要条件.
(2)如果既有p
q,又有q
p,就记作
p
q.
这时,p既是q的充分条件,又是q的必要条件,我们就说p是q的充分必要条件,简称充要条件.
例如,命题p:x+2是无理数,
命题q:x是无理数.
由于“x+2是无理数”
“x是无理数”,所以p是q的充要条件.
2.从逻辑推理关系上看
充分条件、必要条件和充要条件是重要的数学概念,主要是用来区分命题的条件p和结论q之间的下列关系:
①若p
q,但q
p,则p是q的充分但不必要条件;
②若q
p,但p
q,则p是q的必要但不充分条件;
③若p
q,但q
p,则p是q的充要条件;
④若p
q,且┒p
┒q,则p是q的充要条件;
⑤若p
p,且q
p,则p既不是q的充分条件,也不是q的必要条件.
3.从集合与集合之间关系上看
若条件p以集合A的形式出现,结论q以集合B的形式出现,则
①A
B,则p是q的充分条件;
②若A
B,则p是q的必要条件;
③若A=B,则p是q的充要条件;
④若A?B,且A?B,则p既不是q的充分条件,也不是q的必要条件.
从集合的观点来判断充要条件的思考方法,可以进一步加深对充要条件的理解.
4.应用充分条件,必要条件,充要条件时须注意的问题.
(1)充分而不必要条件,必要而不充分条件,充要条件,既不充分也不必要条件,反映了条件p和结论q之间的因果关系,在结合具体问题进行判断时,要注意以下几点:
①确定条件是什么,结论是什么;
②尝试从条件推结论,结论推条件;
③确立条件是结论的什么条件;
④要证明命题的条件是主要的,就既要证明原命题成立,又要证明它的逆命题成立,证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.
(2)对于充要条件,要熟悉它的同义词语.
在解题时常常遇到与充要条件同义的词语,如“当且仅当”“必须且只须”“等价于”“……反过来也成立”.准确地理解和使用数学语言,对理解和把握数学知识是十分重要的.
热心网友
时间:2023-07-15 17:46
也叫充分必要条件,例如有A、B两种情况,由A能推出B,由B也一定能推出A,就是充要条件。如果由A能推出B,而由B不能推出A,则是充分不必要条件 。
热心网友
时间:2023-07-15 17:46
充要条件(the necessary and sufficient conditions) 如果能从命题p推出命题q,那么条件p是条件q的充分条件 如果能从命题q推出命题p ,那么条件p是条件q的必要条件 如果能从命题p推出命题q,且能从命题q推出命题p,那么 条件q与条件p互为充分必要条件,简称充要条件。