发布网友 发布时间:2024-10-23 22:46
共1个回答
热心网友 时间:2024-10-26 22:19
【分析】 首项大于零是前提条件,则由“q>1,a 1 >0”来判断是等比数列{a n }是递增数列. 若已知a 1 <a 2 ,则设数列{a n }的公比为q, 因为a 1 <a 2 ,所以有a 1 <a 1 q,解得q>1. 又a 1 >0,所以数列{a n }是递增数列; 反之,若数列{a n }是递增数列, 则公比q>1且a 1 >0,所以a 1 <a 1 q,即a 1 <a 2 , 所以a 1 <a 2 是数列{a n }是递增数列的充分必要条件. 故选C 【点评】 本题考查等比数列及充分必要条件的基础知识,属保分题.