...f(x)=Asin(wx+φ),x∈R(其中A>0,w>0,0<φ<π/2)的图像与x轴的交点中...
发布网友
发布时间:2024-10-23 22:49
我来回答
共4个回答
热心网友
时间:2024-11-02 14:55
解:(1)由最低点为M(2π3,-2)得A=2.
由x轴上相邻的两个交点之间的距离为π2得T2=π2,
即T=π,ω=2πT=2ππ=2
由点M(2π3,-2)在图象上的2sin(2×2π3+φ)=-2,即sin(4π3+φ)=-1
故4π3+φ=2kπ-π2,k∈Z∴φ=2kπ-11π6
又φ∈(0,π2),∴φ=π6,故f(x)=2sin(2x+π6)
(2)∵x∈[π12,π2],∴2x+π6∈[π3,7π6]
当2x+π6=π2,即x=π6时,f(x)取得最大值2;当2x+π6=7π6
即x=π2时,f(x)取得最小值-1,
故f(x)的值域为[-1,2]
热心网友
时间:2024-11-02 14:57
最低点为M(2π/3,-2)
得A=2
(T/2)=π/2 得T=π ( 2π)/W =π 得W=2
f(x)=2sin(2x+φ),再把M(2π/3,-2)带入
求出φ=2Kπ+π/6 因为,0<φ<π/2 所以φ=π/6
f(x)=2sin(2x+π/6),
第二题带入即可
热心网友
时间:2024-11-02 14:55
因为最低点为M(2π/3,-2)
所以A=2
由(T/2)=π/2 得T=π ( 2π)/W =π 得W=2
f(x)=2sin(2x+φ),再把M(2π/3,-2)带入
求出φ=2Kπ+π/6 因为,0<φ<π/2 所以φ=π/6
f(x)=2sin(2x+π/6)
热心网友
时间:2024-11-02 15:01
1)因为相邻的两个交点之间的距离为π/2,所以
周期T=π/2*2=π
从而ω=2
又图像上一个最低点为M(2π/3,-2)
有A=2
即f(x)=2sin(2x+φ)过M(2π/3,-2),
所以-2=2sin(2*2π/3+φ)
2*2π/3+φ=3/2π
φ=π/6,所以 f(x)的解析式
f(x)=2sin(2x+π/6)
(2)当x∈[π/12,π/2],
根据图象可知
2x+π/6=π/2时取最大值2(此时x=π/6可以)
x=π/2时取最小值-1
所以f(x)的值域为[-1,2]