...<φ<π)在x=π/6处取得最大值2,其图像与轴的相邻两个交点
发布网友
发布时间:2024-10-23 22:17
我来回答
共2个回答
热心网友
时间:2024-10-30 10:43
解:∵函数f(x)在x=π/6处取得最大值2
∴A=2,(ωπ/6)+ψ=π/2
又函数f(x)的图像与轴的相邻两个交点的距离为π/2
∴2π/ω=2*(π/2)
ω=2
(2π/6)+ψ=π/2
ψ=π/6
∴f(x)的解析式为:f(x)=2sin(2x+π/6)
f(x+π/6)=2sin[2(x+π/6)+π/6]
=2sin(2x+π/2)
=2cos2x
=4(cosx)^2-2
∴g(x)=6(cosx)^6-(sinx)^2-1/f(x+π/6)
=[6(cosx)^6+(cosx)^2-1]-1/[4(cosx)^2-2))]
=[24(cosx)^8-12(cosx)^6+4(cosx)^4-2(cosx)^2-4(cosx)^2+2-1]/[4(cox)^2-2)]
=[24(cosx)^8-12(cosx)^6+4(cosx)^4-6(cosx)^2+1]/[4(cosx)^2-2]
∵-1≤cosx≤1
∴0≤(cosx)^2≤1
g(o)=11/2
g(π)=11/2
g(π/2)=-1/2
∴g(x)∈[-1/2,11/2]
∴g(x)的值域为:[-1/2,11/2]。
热心网友
时间:2024-10-30 10:46
那个..你好像有个条件忘说了:cos2x=cos²x-sin²x
g(x)的上半部分可以化成6cosx^4-(1-cosx^2)-1=6cosx^4+cosx^2-2,
利用十字相乘拆开得到(3cosx^2+2)*(2cosx^2-1)
下半部分可以化成2(2cosx^2-1)
上下同除(2cosx^2-1)
得到3/2cosx^2-1
余下的就可以用一元二次方程做啦~需要考虑定义域什么的