...分数、负数)的发生与发展经历了哪些关键的过程

发布网友 发布时间:2024-10-23 17:32

我来回答

1个回答

热心网友 时间:1天前

自然数、小数、分数、负数、正数产生的时间先后顺序是自然数、分数、小数、正数负数

自然数用以计量事物的件数或表示事物次序的数。即用数码(0,被目前多数教材和国外学术性教材所认同)1,2,3,4,……所表示的数(有争议) 。表示物体个数的数叫自然数,自然数由0(1,有争议)开始,一个接一个,组成一个无穷的集体。


19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。

(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义)  自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 1是0的后继者。④0不是任何元素的后继者。 ⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。

基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。

分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。


在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,所以人们引入并使用了分数。

外国

在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。

公元前1850年左右的埃及算学文献中,也开始使用分数,不过那时候古埃及的分数只是分数单位。

中国

我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。

人类历史上最早产生的数是自然数(非负整数),以后在度量和平均分时往往不能正好得到整数的结果,这样就产生了分数。

用一个作标准的量(度量单位)去度量另一个量,只有当量若干次正好量尽的时候,才可以用一个整数来表示度量的结果。如果量若干次不能正好量尽,有两种情况:

例如,用b作标准去量a:

一种情况是把b分成n等份,用其中的一份作为新的度量单位去度量a,量m次正好量尽,就表示a含有把b分成n等份以后的m个等份。例如,把b分成4等份,用其中的一份去量a,量9次正好量尽.在这种情况下,不能用一个整数表示用b去度量a的结果,就必须引进一种新的数--分数来表示度量的结果。

另一种情况是无论把b分成几等份,用其中的一份作为新的度量a,都不能恰好量尽(如用圆的直径去量同一圆的周长)。在这种情况下,就需要引进一种新的数-无理数。在整数除法中,两个数相除,有时不能得到整数商。为了使除法运算总可以施行,也需要引进新的一种数-分数。

综上所述,分数是在实际度量和均分中产生的。

由来

说分数的历史,得从三千多年前的埃及说起。

三千多年前,古埃及为了在不能分得整数的情况下表示数,用特殊符号表示分子为1的分数。两千多年前,中国有了分数,但是,秦汉时期的分数的表现形式不一样。印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,今天分数的表示法就由此而来。

200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是

  就是一种新的数,我们把它叫做分数。

为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征。例如,一个西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要--除法运算的需要而产生的。

分数中为什么把分数线上的叫分子,分数线下的叫分母?所谓分数,就是把数来进行划分的意思,所以,分数线上面的那个数于是便成了多少等分之一,而下面那个数则表示一个数的整体。现在再来看为什么上面的叫“分子”的问题,这涉及到“分数单位”,当你把一个数分成若干等份的时候,取其中之一份就是多少分之一,这就是分数单位。只有当分数线上下的数都相等的时候,该分数的值才会等于1,其他任何情况下,都会小于1。既然通常(也就是真分数)分数线上面的数都比下面的数小,上面的小的数称作“子”,下面的大的数称作“母”就很好理解了。

小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。

小数是我国最早提出和使用的.早在一千七百多年前,我国古代数学家刘微(生于公元三世纪,山东人,中国古代伟大的数学家.世界上最早提出十进小数概念的人.他的杰作《九章算术注》和《海岛算经》是我国最宝贵的数学遗产.)在解决一个数学难题时就提出了把整个位以下无法标出名称的部分称为微数.
古代,我国用小棒表示数.
刘微
最初,人们表示小数只是用文字.到了公元十三世纪,我国元代数字家朱世杰提出了小数的名称,同时出现了低一格表示小数的记法.例如:
64.12 ┻||||_|| 这是世界上最早的小数表示方法.
这种记法后来传到了中亚和欧洲.
后来,又有人将小数部分的各个数字用圆圈圈起
来,这么一圈,就把整数部分和小数部分分开了.有
了阿拉伯数字后,先后出现了像这样表示小数的方法.
64.12 64 64 12
在西方,小数出现很晚.直到十六世纪,法国数
学家克拉维斯用小圆点“.”表示小数点,确定了现
在表示小数的形式;不过还有一部分国家是用逗号
“,”表示小数点的.例如: 
64.12 64,12

负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。在数轴线上,负数都在0的左侧,最早记载负数的是我国古代的数学著作《九章算术》。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。两个负数比较大小,绝对值大的反而小

据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”,算筹也可以用骨头和象牙来制作。

中国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。

中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,[2]  正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。

正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”

这段关于正负数的运算法则的叙述是完全正确的,负数的引入是中国数学家杰出的贡献之一。


声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com