证明:(1)若函数y=f(x)是偶函数,则f(x+a)=f(-x-a);(2)若函数y=f(x+a...

发布网友 发布时间:2024-10-23 03:45

我来回答

1个回答

热心网友 时间:5分钟前

证明:(1)∵函数y=f(x)是偶函数,
∴f(-x)=f(x),
令x取x+a,则-x取-(x+a),
∴f[-(x+a)]=f(x+a),
即f(x+a)=f(-x-a);
(2)令g(x)=f(x+a),
∵函数y=g(x)=f(x+a)是偶函数,
∴g(-x)=g(x),
则f(x+a)=f(-x+a).
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com