英语必修五第一单元WORKBOOK里的finding the solution课文翻译...

发布网友 发布时间:2024-10-23 23:08

我来回答

2个回答

热心网友 时间:15小时前

寻找解决的方法
  你喜欢谜题吗?欧拉喜欢。你有没有解决一个你听到的任务?不!嗯,别担心,欧拉也一样!因为他热爱数学难题,他想知道这个为什么不行。所以他绕着小镇,在哥尼斯堡桥梁反复走了好几次。令他吃惊的是,他发现,他可以一次性穿过六座桥在一座桥不走两次或走回头路的情况下(见图3),但是他却不能穿过所有的七座。他只想知道为什么。所以他决定换一种方式看这个问题。
  他把镇子和七个桥画在画上。并标志了土地和桥梁。然后他在每个地区的土地上打点。他将点通过桥梁用曲线连在一起 (请参阅图1)。他注意到一些点只要三条线通过(A,B和C)另一个有五条线经过(D)。他想这是否重要,并且想知道为什么这样不行。三加五是奇数,他称他们为“奇数的”点。为了使谜题更加清晰,他擦去了桥使模式变得清晰(见图2)。
  他想知道如果他去掉一个桥这个难题是否将解开 (如图3)。这一次的图更简单些(如图4),他数了数连接点A,B,C和d 的线.这一次不同了。其中两个线变了(B有两个和D有四个)。2和4都是偶数,所以欧拉称他们为“偶数的”点。在图4有两个点的连线是奇数(A和C都有三个),所以他称他们为“奇数的”点。
  使用这个新的图,欧拉从A点开始,沿着直线到B,然后到C。然后他跟着曲线通过D并回到A 。最后他通过另外的曲线从D到C,这一次它完成模式了。他已经能够通过图上的每个点,但不会通过任何一条线两次或将铅笔离开纸面。欧拉变得非常兴奋。现在他知道奇数的点是拼图的关键。但是, 如果你想要完成,你的图仍然需要一些偶数点。所以欧拉寻找到一个一般规则:
  如果一个图有超过两个奇数的点,你不抬起铅笔或通过一条线两次不能完成。
  很快他去他的课本找到更多的数据。他看了看下面四个图,发现当他利用他的规律,他可以告诉他是否可以不将铅笔离开纸而通过整个图。他喜出望外。他不知道,但他的这个小难题已经发展一个全新的叫做“拓扑”的数学分支。为了纪念他,这个谜题被称作是“寻找的欧拉路径”。

热心网友 时间:15小时前

你知道了吗,我也需要
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com