高一数学题:在三角形ABC中 (1+cosA)/2=(b+c)/2c 判断该三角形的形状

发布网友 发布时间:2024-10-24 12:59

我来回答

2个回答

热心网友 时间:7分钟前

解:
因为:(1+cosA)/2=(b+c)/2c
所以:(cosA+1)/2=(sinB+sinC)/2sinC,则:cosA=sinB/sinc
即:cosAsinC=sinB=sin[180°-(A+C)]=sin(A+C)=sinAcosC+cosAsinC
所以:sinAcosC=0
因为:A,B,C为三角形内的角,所以:sinA不等于0
所以:cosC=0,解得:C=90°
所以:该三角形为直角三角形
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
祝你学习进步,更上一层楼!
不明白请及时追问,满意敬请采纳,O(∩_∩)O谢谢~~

热心网友 时间:5分钟前

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com