发布网友 发布时间:2024-10-24 13:00
共2个回答
热心网友 时间:3分钟前
泰勒公式形式
泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。
若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:
其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。[1]
泰勒公式
余项
泰勒公式的余项Rn(x)可以写成以下几种不同的形式:
1、佩亚诺(Peano)余项:
这里只需要n阶导数存在。
2、施勒米尔希-罗什(Schlomilch-Roche)余项:
其中θ∈(0,1),p为任意正实数。(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项)[2]
3、拉格朗日(Lagrange)余项:
其中θ∈(0,1)。
4、柯西(Cauchy)余项:
其中θ∈(0,1)。
5、积分余项:
其中以上诸多余项事实上很多是等价的。[2]
带佩亚诺余项
以下列举一些常用函数的泰勒公式[1]:
热心网友 时间:7分钟前
泰勒公式(Taylor's Theorem)是数学分析中一个非常重要的概念,它提供了一种将复杂的函数用多项式来近似表示的方法。泰勒公式可以写成以下形式: