已知数列满足a1=2,(n+1)an=(n-1)a(n-1)求通项公式

发布网友 发布时间:2024-10-24 09:32

我来回答

1个回答

热心网友 时间:2024-11-06 17:26

学过高等数学的人都知道,调和级数S=1+1/2+1/3+……是发散的,证明如下: 由于ln(1+1/n)n (n=1,2,3,…) 于是调和级数的前n项部分和满足 Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n) =ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n] =ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1) 由于 lim Sn(n→∞)≥lim ln(n+1)(n→∞)=+∞ 所以Sn的极限不存在,调和级数发散。 但极限S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)却存在,因为 Sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n) =ln(n+1)-ln(n)=ln(1+1/n) 由于 lim Sn(n→∞)≥lim ln(1+1/n)(n→∞)=0 因此Sn有下界 而 Sn-S(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)] =ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)>ln(1+1/n)-1/n>0 所以Sn单调递减。由单调有界数列极限定理,可知Sn必有极限,因此 S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)存在。 于是设这个数为γ,这个数就叫作欧拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数。在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等。例如求lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞),可以这样做: lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞)=lim[1+1/2+1/3+…+1/(n+n)-ln(n+n)](n→∞)-lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)+lim[ln(n+n)-ln(n)](n→∞)=γ-γ+ln2=ln2
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com