求值sin10cos20cos40cos60
发布网友
发布时间:2024-11-03 20:11
我来回答
共3个回答
热心网友
时间:2024-11-03 20:36
sin10°cos20°cos40°cos60°
=cos80°cos20°cos40°cos60°
=cos20°cos40°cos80°*/2
=sin20°cos20°cos40°cos80°/(2sin20°)
=sin40°cos40°cos80°/(4sin20°)
=sin80°cos80°/(8sin20°)
=sin160°/(16sin20°)
∵ sin160°=sin20°
∴ 原式=1/16
热心网友
时间:2024-11-03 20:36
sin10cos20cos40cos60
=cos10sin10cos20cos40cos60/cos10
=1/2sin20cos20cos40cos60/cos10
=1/4sin40cos40cos60/cos10
=1/8sin80cos60/cos10
=1/8sin(90-10)cos60/cos10
=1/8cos10cos60/cos10
=1/8cos60
=1/8*1/2
=1/16
热心网友
时间:2024-11-03 20:37
sin10º=cos80º
sin10cos20cos40cos60
=1/2*cos20ºcos40ºcos80º
=1/4*2sin20ºcos20ºcos40ºcos80º/sin20º
=1/8*2*sin40ºcos40ºcos80º/sin20º
=1/16*2sin80ºcos80º/sin20º
=1/16*sin160º/sin20º
=1/16*sin20º/sin20º
=1/16