ipad能用来学习python吗?

发布网友 发布时间:2022-03-04 05:16

我来回答

1个回答

热心网友 时间:2022-03-04 06:45

人工智能+区块链的发展趋势及应用调研报告

其实,不只是iPad,手机也可以。

痛点

我组织过几次线下编程工作坊,带着同学们用Python处理数据科学问题。

其中最让人头疼的,就是运行环境的安装。

实事求是地讲,参加工作坊之前,我已经做了认真准备。

例如集成环境,选用了对用户很友好的Anaconda。

代码在我的Macbook电脑上跑,没有问题。还拿到学生的Windows 7上跑,也没有问题。这才上传到了Github。

在发布的教程文章里,我也已经把安装软件包的说明写得非常详细。

还针对 Anaconda 这一 Python 运行环境的安装和运行,专门录制了视频。

但是,工作坊现场遇见的问题,依然五花八门。

有的是操作系统。例如你可能用Windows 10。实话实说,我确实没用过。拿着Surface端详,连安装后的Anaconda文件夹都找不到在哪儿。

有的是编码。不同操作系统,有的默认中文编码是UTF-8,有的是GBK。同样一段中文文本,我这里显示一切正常,你那里就是乱码。

有的是套件路径。来参加工作坊前,你可能看过我一些教程,并安装了 Python 2.7 版本 Anaconda。来到现场,一看需要 Python 3.6 版本,你就又安装了一份新的。结果执行起来,你根本分不清运行的 Python, pip 命令来自哪一个套件,更搞不清楚软件包究竟安装到哪里去了。再加上虚拟环境配置,你就要抓狂了。

还有的,甚至是网络拥塞问题。因为有时需要现场安装调用体积庞大的软件包,几十台电脑“预备——齐”一起争抢有限的Wifi带宽,后果可想而知。

痛定思痛,我决定改变一下现状。

目前的教程只提供基础源代码。对于许多新手同学来说,是不够的。

许多同学,就倒在了安装依赖软件包的路上,继而干脆放弃了。

变通的办法有许多。例如干脆录制代码执行视频给你看。

但是正如我在《MOOC教学,什么最重要?》一文中说过的,学习过程里,反馈最重要。

你需要能运行代码,并且第一时间获得结果反馈。

在此基础上,你还得能修改代码,对比前后执行结果的差别。

我得给你提供一个直接可以运行的环境。

零安装,自然也就没了上述烦恼。

这个事儿可能吗?

我研究了一下,没问题。

只要你的设备上有个现代化浏览器(包括但不限于Google Chrome, Firefox, Safari和Microsoft Edge等)就行。

IE 8.0?

那个不行,赶紧升级吧!

读到这里,你应该想明白了。因为只挑浏览器,不挑操作系统,所以别说你用Windows 10,你就是用iPad,都能运行代码。

尝试

请你打开浏览器,输入这个链接(http://t.cn/R35fElv)。

看看会发生什么?

我这里用iPad给你演示。

一开始会有个启动界面出来。请你稍等10几秒钟。

然后,你就能看到熟悉的Python代码运行界面了。

这个界面来自 Jupyter Lab。

你可以将它理解为 Jupyter Notebook 的增强版,它具备以下特征:

代码单元直接鼠标拖动; 一个浏览器标签,可打开多个Notebook,而且分别使用不同的Kernel; 提供实时渲染的Markdown编辑器; 完整的文件浏览器; CSV数据文件快速浏览 ……

图中左侧分栏,是工作目录下的全部文件。

右侧打开的,是咱们要使用的ipynb文件。

为了证明这不是逗你玩儿,请你点击右侧代码上方工具栏的运行按钮。

点击一下,就会运行出当前所在代码单元的结果。

不断点击下来,你可以看见,结果都被正常渲染。

连图像也能正常显示。

甚至连下面这种需要一定运算量的可视化结果,都没问题。

为了证明这不是变魔术,你可以在新的单元格,写一行输出语句。

就让Python输出你的名字吧。

假如你叫 Chuck,就这样写:

print("Hello, Chuck!")

把它替换成你自己的姓名,看看输出结果是否正确?

其实,又何止是iPad而已?

你如果足够勇(sang) 于(xin) 尝(bing) 试(kuang),手机其实也是可以的。

就像这样。

流程

下面我给你讲讲,这种效果是怎么做出来的。

我们需要用到一款工具,叫做 mybinder 。它可以帮助我们,把 github 上的某个代码仓库(repo),快速转换成为一个可运行的环境。

注意 mybinder 为我们提供了云设施,也就是计算资源和存储资源。因此即便许许多多的用户同时在线使用同一份代码转换出来的环境,也不会互相冲突。

我们先来看看,怎么准备一个可供 mybinder 顺利转换的代码仓库。

我为你提供的样例在这里(http://t.cn/R35MEqk):

顺便说一句,这个样例来自于我的数据科学系列教程之《如何用Python处理自然语言?(Spacy与Word dding)》。感兴趣的同学可以点击链接,查看原文。

在该 GitHub 页面展示的文件列表中,你需要注意以下3个文件:

demo.ipynb environment.yml postBuild
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com